
Release Notes for Fixed-Point
Designer™

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Release Notes for Fixed-Point Designer™
© COPYRIGHT 2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

R2013a

Product restructuring . 2
Histogram logging in instrumented MATLAB Code
Generation report . 3

fi object in indexing and switch-case expressions 4
zeros, ones, and cast code reuse for floating-point and
fixed-point types . 5

Code generation for x.^n when n is a variable and x is a fi
object . 7

Fixed-Point Advisor support for model reference 8
Automated conversion of floating-point to fixed-point types
in MATLAB Coder projects . 9

Improved autoscaling for models with virtual bus
signals . 10

Data Type Override for MATLAB Function block using
built-in doubles and singles . 11

MATLAB Function block uses
DataTypeOverrideAppliesTo setting 12

Instrumentation for arrays of structs 13
File I/O function support . 14
Support for nonpersistent handle objects 15
Load from MAT-files for code acceleration 16
New toolbox functions supported for code acceleration and
generation . 17

Function to be removed in a future release 19
Function being removed . 20

iii

iv Contents

R2013a
Version: 4.0
New Features: Yes
Bug Fixes: Yes

1

R2013a

Product restructuring

The Fixed-Point Designer™ product replaces two pre-existing products:
Fixed-Point Toolbox™ and Simulink® Fixed Point™. You can access archived
documentation for both products on the MathWorks® Web site.

2

 http://www.mathworks.com/help/doc-archives.html
 http://www.mathworks.com/help/doc-archives.html

Histogram logging in instrumented MATLAB Code Generation report

Histogram logging in instrumented MATLAB Code
Generation report

The buildInstrumentedMex and showInstrumentationResults
instrumentation functions now can generate log2 histograms. A histogram is
generated for each named and intermediate variable and for each expression
in your code. The code generation report Variables tab includes a link to
the histogram for each variable. You can use this histogram to determine
the word and fraction lengths for your fixed-point values. Refer to the
buildInstrumentedMex and showInstrumentationResults reference pages
for information.

3

R2013a

fi object in indexing and switch-case expressions

Effective this release, you can use fi objects as indices to arrays of built-in
types and fi types. You can also use fi objects in switch-case expressions.
These changes let you use fi objects without having to convert them. See
the fi reference page for examples.

4

zeros, ones, and cast code reuse for floating-point and fixed-point types

zeros, ones, and cast code reuse for floating-point
and fixed-point types

The zeros, ones, and cast functions now work with fixed-point data types
as well as built-in data types. The functions can now return an output
whose class matches that of a specified numeric variable or fi object. For
built-in data types, the output assumes the numeric data type, sparsity,
and complexity (real or complex) of the specified numeric variable. For fi
objects, the output assumes the numerictype, complexity (real or complex),
and fimath of the specified fi object.

For example:

>> a = fi([],1,24,12);
>> c = cast(pi,'like',a)

c =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 24

FractionLength: 12

>> z = zeros(2,3,'like',a)

z =

0 0 0
0 0 0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 24

FractionLength: 12

>> o = ones(2,3,'like',a)

o =

5

R2013a

1 1 1
1 1 1

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 24

FractionLength: 12

This capability allows you to cleanly separate algorithm code in MATLAB®

from data type specifications. Using separate data type specifications enables
you to:

• Reuse your algorithm code with different data types.

• Switch easily between fixed-point and floating-point data types to compare
fixed-point behavior to a floating-point baseline.

• Try different fixed-point data types to determine their effect on the
behavior of your algorithm.

• Write clean, readable code.

For more information, see “Implement FIR Filter Algorithm for Floating-Point
and Fixed-Point Types using cast and zeros”.

6

Code generation for x.^n when n is a variable and x is a fi object

Code generation for x.^n when n is a variable and
x is a fi object

If the output type can be derived from the input settings, the mpower and
power functions no longer require a constant exponent input. For more
information, see mpower and power.

7

R2013a

Fixed-Point Advisor support for model reference

The Fixed-Point Advisor now performs checks on referenced models. It
checks the entire model reference hierarchy against fixed-point guidelines.
The Advisor also provides guidance about model configuration settings and
unsupported blocks to help you prepare your model for conversion to fixed
point.

8

Automated conversion of floating-point to fixed-point types in MATLAB® Coder™ projects

Automated conversion of floating-point to fixed-point
types in MATLAB Coder projects

You can now convert floating-point MATLAB code to fixed-point C code using
the fixed-point conversion capability in MATLAB Coder™ projects. You can
choose to propose data types based on simulation range data, static range
data, or both.

Note You must have a MATLAB Coder license.

During fixed-point conversion, you can:

• Propose fraction lengths based on default word lengths.

• Propose word lengths based on default fraction lengths.

• Optimize whole numbers.

• Specify safety margins for simulation min/max data.

• Validate that you can build your project with the proposed data types.

• Test numerics by running the test file with the fixed-point types applied.

• View a histogram of bits used by each variable.

For more information, see “Propose Fixed-Point Data Types Based on
Simulation Ranges” and “Propose Fixed-Point Data Types Based on Derived
Ranges”.

9

R2013a

Improved autoscaling for models with virtual bus
signals

Autoscaling with the Fixed-Point Tool now handles data type constraints for
virtual buses that do not have any associated bus objects. The data type
proposals take into account the constraints introduced by these bus signals.

This improved autoscaling reduces data type mismatch errors. It also enables
the Fixed-Point Tool to provide additional diagnostic information when you
accept autoscaling proposals. For more information, see “Shared Data Type
Summary”.

10

Data Type Override for MATLAB Function block using built-in doubles and singles

Data Type Override for MATLAB Function block using
built-in doubles and singles
Compatibility Considerations: Yes

The data type override rules for MATLAB Function block input signals and
parameters have changed. If the input signals and parameters are double
or single, and you specify data type override to be Double or Single, the
overridden data types are now built-in double or built-in single, not fi
double and fi single as in previous releases. If the input signals and
parameters are fi objects or fixed-point signals, and you specify data type
override to be Double or Single, the overridden data types are fi double
and fi single as in previous releases. For more information, see “MATLAB
Function Block with Data Type Override”.

Compatibility Considerations

If you have MATLAB Function block code from previous releases that contains
special cases for fi double or fi single, and you specify data type override
to be Double or Single, you might have to update this code to handle built-in
double and single.

11

R2013a

MATLAB Function block uses
DataTypeOverrideAppliesTo setting

When you specify data type override for subsystems that contain a MATLAB
Function block, you can now also specify which data types to override in the
block. Use the DataTypeOverrideAppliesTo parameter to specify whether to
override all numeric types, floating-point data types only, or fixed-point data
types only. In previous releases, the DataTypeOverrideAppliesTo parameter
had no effect on MATLAB Function block input and parameter arguments.

You can specify data type override settings at the model or subsystem
level. For more information, see “MATLAB Function Block with Data Type
Override”.

12

Instrumentation for arrays of structs

Instrumentation for arrays of structs

The buildInstrumentedMex and showInstrumentationResults
instrumentation functions now show instrumentation results for arrays of
structs. Each field of each struct is logged and appears in the code generation
report on the Variables tab.

13

R2013a

File I/O function support

The following file I/O functions are now supported for code acceleration and
generation:

• fclose

• fopen

• fprintf

To view implementation details, see “Functions Supported for Code
Acceleration or Generation”.

14

Support for nonpersistent handle objects

Support for nonpersistent handle objects

You can now accelerate code using fiaccel for local variables that contain
references to handle objects or System objects. In previous releases,
accelerating code for these objects was limited to objects assigned to persistent
variables.

15

R2013a

Load from MAT-files for code acceleration

fiaccel now supports a subset of the load function for loading run-time
values from a MAT-file. It also provides a new function, coder.load, for
loading compile-time constants. This support facilitates code generation from
MATLAB code that uses load to load constants into a function. You no longer
have to manually type in constants that were stored in a MAT-file.

To view implementation details for the load function, see “Functions
Supported for Code Acceleration or Generation”.

16

New toolbox functions supported for code acceleration and generation

New toolbox functions supported for code
acceleration and generation

To view implementation details, see “Functions Supported for Code
Acceleration or Generation”.

Bitwise Operation Functions

• flintmax

Computer Vision System Toolbox Classes and Functions

• binaryFeatures

• insertMarker

• insertShape

Data File and Management Functions

• computer

• fclose

• fopen

• fprintf

• load

Image Processing Toolbox Functions

• conndef

• imcomplement

• imfill

• imhmax

• imhmin

• imreconstruct

• imregionalmax

17

R2013a

• imregionalmin

• iptcheckconn

• padarray

Interpolation and Computational Geometry

• interp2

MATLAB Desktop Environment Functions

• ismac

• ispc

• isunix

String Functions

• strfind

• strrep

18

Function to be removed in a future release

Function to be removed in a future release
Compatibility Considerations: Yes

The saveglobalfimathpref will be removed in a future release.

Compatibility Considerations

Do not save globalfimath as a MATLAB preference. If you have previously
saved globalfimath as a MATLAB preference, use removeglobalfimathpref
to remove it.

19

R2013a

Function being removed
Compatibility Considerations: Yes

The emlmex function has been removed.

Compatibility Considerations

The emlmex function generates an error in R2013a. Use fiaccel instead.

20

	toc
	R2013a
	Product restructuring
	Histogram logging in instrumented MATLAB Code Generation report
	fi object in indexing and switch-case expressions
	zeros, ones, and cast code reuse for floating-point and fixed-po
	Code generation for x.^n when n is a variable and x is a fi obje
	Fixed-Point Advisor support for model reference
	Automated conversion of floating-point to fixed-point types in M
	Improved autoscaling for models with virtual bus signals
	Data Type Override for MATLAB Function block using built-in doub
	MATLAB Function block uses DataTypeOverrideAppliesTo setting
	Instrumentation for arrays of structs
	File I/O function support
	Support for nonpersistent handle objects
	Load from MAT-files for code acceleration
	New toolbox functions supported for code acceleration and genera
	Bitwise Operation Functions
	Computer Vision System Toolbox Classes and Functions
	Data File and Management Functions
	Image Processing Toolbox Functions
	Interpolation and Computational Geometry
	MATLAB Desktop Environment Functions
	String Functions
	Function to be removed in a future release
	Function being removed

